Enhancing MML Clustering Using Context Data with Climate Applications

نویسندگان

  • Gerhard Visser
  • David L. Dowe
  • Petteri Uotila
چکیده

In Minimum Message Length (MML) clustering (unsupervised classification, mixture modelling) the aim is to infer a set of classes that best explains the observed data items. There are cases where parts of the observed data do not need to be explained by the inferred classes but can be used to improve the inference and resulting predictions. Our main contribution is to provide a simple and flexible way of using such context data in MML clustering. This is done by replacing the traditional mixing proportion vector with a new context matrix. We show how our method can be used to give evidence regarding the presence of apparent long-term trends in climate-related atmospheric pressure records. Akaike Information Criterion (AIC) and Bayesian Information Criterion (BIC) solutions for our model have also been implemented to compare with the MML solution.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Using Information Theory to Discover Side Chain Rotamer Classes: Analysis of the Effects of Local Backbone Structure

An understanding of the regularities in the side chain conformations of proteins and how these are related to local backbone structures is important for protein modeling and design. Previous work using regular secondary structures and regular divisions of the backbone dihedral angle data has shown that these rotamers are sensitive to the protein's local backbone conformation. In this preliminar...

متن کامل

Data Clustring Using A New CGA(Chaotic-Generic Algorithm) Approach

Clustering is the process of dividing a set of input data into a number of subgroups. The members of each subgroup are similar to each other but different from members of other subgroups. The genetic algorithm has enjoyed many applications in clustering data. One of these applications is the clustering of images. The problem with the earlier methods used in clustering images was in selecting in...

متن کامل

Data Clustring Using A New CGA(Chaotic-Generic Algorithm) Approach

Clustering is the process of dividing a set of input data into a number of subgroups. The members of each subgroup are similar to each other but different from members of other subgroups. The genetic algorithm has enjoyed many applications in clustering data. One of these applications is the clustering of images. The problem with the earlier methods used in clustering images was in selecting in...

متن کامل

Analyse Power Consumption by Mobile Applications Using Fuzzy Clustering Approach

With the advancements in mobile technology and its utilization in every facet of life, mobile popularity has enhanced exponentially. The biggest constraint in the utility of mobile devices is that they are powered with batteries. Optimizing mobile’s size and weight is always the choice of designer, which led limited size and capacity of battery used in mobile phone. In this paper analysis of th...

متن کامل

MLIFT: Enhancing Multi-label Classifier with Ensemble Feature Selection

Multi-label classification has gained significant attention during recent years, due to the increasing number of modern applications associated with multi-label data. Despite its short life, different approaches have been presented to solve the task of multi-label classification. LIFT is a multi-label classifier which utilizes a new strategy to multi-label learning by leveraging label-specific ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009